API
Example
from pymoo.optimize import minimize
from pydmoo.algorithms.classic.nsga2_ae import NSGA2AE as DMOEA
from pydmoo.problems import DF1, GTS1
from pydmoo.problems.dyn import TimeSimulation
n_var = 10 # dimension of the decision variable
t0 = 100 # generations before the first environmental change
nc = 50 # total number of environmental changes
nt = 10 # severity of change
taut = 10 # frequency of change (generations between changes)
pop_size = 100 # population size
problem = GTS1(n_var=n_var, nt=nt, taut=taut, t0=t0)
algorithm = DMOEA(pop_size=pop_size)
seed = 2026
verbose = True
res = minimize(
problem,
algorithm,
termination=("n_gen", taut * nc + t0),
callback=TimeSimulation(),
seed=seed,
verbose=verbose,
)