Bases: NSGA2KTMM
Inverse Modeling with Knowledge Transfer.
Inverse Modeling for Dynamic Multiobjective Optimization with Knowledge Transfer In objective Space.
Source code in pydmoo/algorithms/modern/nsga2_imkt.py
| def __init__(self, **kwargs):
super().__init__(**kwargs)
self.size_pool = 10
self.denominator = 0.5
|
Functions
_response_mechanism
Response mechanism.
Source code in pydmoo/algorithms/modern/nsga2_imkt.py
| def _response_mechanism(self):
"""Response mechanism."""
"""Inverse Modeling with Knowledge Transfer."""
pop = self.pop
X = pop.get("X")
# recreate the current population without being evaluated
pop = Population.new(X=X)
# sample self.pop_size individuals in decision space
samples_old = self.sampling_new_pop()
# select self.pop_size/2 individuals with better convergence and diversity
samples = samples_old[:int(len(samples_old)/2)]
# knowledge in objective space
means_stds, mean, std = self._in_decision_or_objective_space_1d(samples, "objective_space")
mean_new, std_new = self._select_means_stds(means_stds, mean, std)
# sample self.pop_size individuals in objective space
F = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)
# TODO
# inverse mapping
# X = FB
B = closed_form_solution(samples.get("X"), samples.get("F"))
# X = FB
X = np.dot(F, B)
# bounds
if self.problem.has_bounds():
xl, xu = self.problem.bounds()
X = clip_and_randomize(X, xl, xu, random_state=self.random_state)
# merge
pop = Population.merge(samples_old, Population.new(X=X))
return pop
|