Skip to content

algorithms.modern.nsga2_imkt_clstm

Classes

NSGA2IMcLSTM

NSGA2IMcLSTM(**kwargs)

Bases: NSGA2IMKT

Source code in pydmoo/algorithms/modern/nsga2_imkt_clstm.py
def __init__(self, **kwargs):
    super().__init__(**kwargs)

    self._n_timesteps = 10
    self._sequence_length = 5  # Use 5 historical time steps to predict next step
    self._incremental_learning = False

Functions

_response_mechanism
_response_mechanism()

Response mechanism.

Source code in pydmoo/algorithms/modern/nsga2_imkt_clstm.py
def _response_mechanism(self):
    """Response mechanism."""
    pop = self.pop
    X = pop.get("X")

    # recreate the current population without being evaluated
    pop = Population.new(X=X)

    # sample self.pop_size individuals in decision space
    samples_old = self.sampling_new_pop()

    # select self.pop_size/2 individuals with better convergence and diversity
    samples = samples_old[:int(len(samples_old)/2)]

    # knowledge in objective space
    means_stds, mean, std = self._in_decision_or_objective_space_1d(samples, "objective_space")

    # Check if sufficient historical data is available for LSTM prediction
    if len(means_stds) > self._n_timesteps:
        # Update pool
        self.data["means_stds"] = means_stds[self._n_timesteps:]

        # Prepare time series data from historical means and standard deviations
        time_series_data = prepare_data_means_std(self._n_timesteps, means_stds)

        # Initialize predictor and generate prediction for next time step
        next_prediction = self._lstm.convert_train_predict(time_series_data)

        # Convert prediction tensor to numpy array for further processing
        next_prediction = next_prediction.numpy()

        # Split prediction into mean and standard deviation components
        # First n_obj elements represent mean values, remaining elements represent standard deviations
        mean_new, std_new = next_prediction[:self.problem.n_obj], next_prediction[self.problem.n_obj:]
        std_new = np.abs(std_new)

    else:
        mean_new, std_new = self._select_means_stds(means_stds, mean, std)

    # sample self.pop_size individuals in objective space
    F = univariate_gaussian_sample(mean_new, std_new, self.pop_size, random_state=self.random_state)

    # TODO
    # inverse mapping
    # X = FB
    B = closed_form_solution(samples.get("X"), samples.get("F"))

    # X = FB
    X = np.dot(F, B)

    # bounds
    if self.problem.has_bounds():
        xl, xu = self.problem.bounds()
        X = clip_and_randomize(X, xl, xu, random_state=self.random_state)

    # merge
    pop = Population.merge(samples_old, Population.new(X=X))

    return pop

Functions