algorithms.modern.nsga2_imkt_lstm¶
Classes¶
NSGA2IMLSTM ¶
Bases: NSGA2IMKT
Inverse Modeling with LSTM (IMLSTM).
Inverse Modeling for Dynamic Multiobjective Optimization with LSTM prediction In objective Space.
Source code in pydmoo/algorithms/modern/nsga2_imkt_lstm.py
Functions¶
_response_mechanism ¶
Response mechanism.
Source code in pydmoo/algorithms/modern/nsga2_imkt_lstm.py
Functions¶
prepare_data_means_std ¶
Prepare time series data from means and standard deviations.
This function converts a sequence of mean vectors and standard deviation vectors into a time series format suitable for machine learning models. It concatenates mean values and standard deviation values to create feature vectors for each time step.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
means_stds | list of tuples | List containing (mean, std, n_iter) pairs for each time step, where: - mean: 1D numpy array of mean values - std: 1D numpy array of standard deviation values - n_iter: number of iterations (not used in feature extraction) | required |
Returns:
| Name | Type | Description |
|---|---|---|
time_series_data | list | Combined feature data with shape (n_timesteps, n_features) Each row represents a time step containing: [mean_1, mean_2, ..., mean_n, std_1, std_2, ..., std_n] |