problems.dynamic.gts¶
Classes¶
GTS1 ¶
Bases: GTS
GTS1 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1)\), \(\mathbf{x}_{II,1} = (x_2, \cdots, x_{\lfloor\frac{D}{2}\rfloor})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 1}, \cdots, x_D)\), \(h_1(\mathbf{x}_I, t) = \cos(0.5\pi t)\) and \(h_2(\mathbf{x}_I, t) = G(t) + x_1^{H(t)}\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment, the search space is \([0,1] \times [-1,1]^{\lfloor\frac{D}{2}\rfloor -1} \times [-1, 2]^{\lceil\frac{D}{2}\rceil}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.
Source code in pydmoo/problems/dynamic/gts.py
GTS10 ¶
Bases: GTS
GTS10 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1, x_2)\), \(\mathbf{x}_{II,1} = (x_3, \cdots, x_{\lfloor\frac{D}{2}\rfloor + 1})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 2}, \cdots, x_D)\), \(h_1(\mathbf{x}_I, t) = \left\vert{G(t)}\right\vert\) and \(h_2(\mathbf{x}_I, t) = -0.5 + \frac{\left\vert{G(t)\sin(4\pi x_1)}\right\vert}{0.5(1+\left\vert{G(t)}\right\vert)}\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment,% the search space is \([0,1]^2 \times [0,1]^{\lfloor\frac{D}{2}\rfloor - 1} \times [-1, 1]^{\lceil\frac{D}{2}\rceil - 1}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
Pareto front.
Source code in pydmoo/problems/dynamic/gts.py
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.
Source code in pydmoo/problems/dynamic/gts.py
GTS10_2 ¶
GTS10_3 ¶
GTS11 ¶
Bases: GTS
GTS11 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1, x_2)\), \(\mathbf{x}_{II,1} = (x_3, \cdots, x_{\lfloor\frac{D}{2}\rfloor + 1})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 2}, \cdots, x_D)\), \(h_1(\mathbf{x}_I, t) = \left\vert{G(t)}\right\vert\) and \(h_2(\mathbf{x}_I, t) = G(t) + x_1^{H(t)}\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment, the search space is \([0,1]^2 \times [0,1]^{\lfloor\frac{D}{2}\rfloor - 1} \times [-1, 2]^{\lceil\frac{D}{2}\rceil - 1}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
Pareto front.
Source code in pydmoo/problems/dynamic/gts.py
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.
Source code in pydmoo/problems/dynamic/gts.py
GTS11_2 ¶
GTS11_3 ¶
GTS1_2 ¶
GTS1_3 ¶
GTS2 ¶
Bases: GTS
GTS2 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1, x_2)\), \(\mathbf{x}_{II,1} = (x_3, \cdots, x_{\lfloor\frac{D}{2}\rfloor + 1})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 2}, \cdots, x_D)\), \(c = \cot(3\pi t^2), \text{when~} t^2 \neq \frac{n}{3}, n \in \mathbb{Z}, c = 1e-32, \text{otherwise}\), \(h_1(\mathbf{x}_I, t) = \frac{1}{\pi}\left\vert{\arctan(c)}\right\vert\) and \(h_2(\mathbf{x}_I, t) = G(t) + x_1^{H(t)}\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment, the search space is \([0,1]^2 \times [0,1]^{\lfloor\frac{D}{2}\rfloor -1} \times [-1, 2]^{\lceil\frac{D}{2}\rceil-1}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
Pareto front.
Source code in pydmoo/problems/dynamic/gts.py
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.
Source code in pydmoo/problems/dynamic/gts.py
GTS2_2 ¶
GTS2_3 ¶
GTS3 ¶
Bases: GTS
GTS3 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1)\), \(\mathbf{x}_{II,1} = (x_2, \cdots, x_{\lfloor\frac{D}{2}\rfloor})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 1}, \cdots, x_D)\), \(h_1(\mathbf{x}_I, t) = \frac{G(t)\sin(4\pi x_1)}{1 + \left\vert{G(t)}\right\vert}\) and \(h_2(\mathbf{x}_I, t) = G(t) + x_1^{H(t)}\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment, the search space is \([0,1] \times [-1,1]^{\lfloor\frac{D}{2}\rfloor - 1} \times [-1, 2]^{\lceil\frac{D}{2}\rceil}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
Pareto front.
Source code in pydmoo/problems/dynamic/gts.py
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.
Source code in pydmoo/problems/dynamic/gts.py
GTS3_2 ¶
GTS3_3 ¶
GTS4 ¶
Bases: GTS
GTS4 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1)\), \(\mathbf{x}_{II,1} = (x_2, \cdots, x_{\lfloor\frac{D}{2}\rfloor})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 1}, \cdots, x_D)\), \(h_1(\mathbf{x}_I, t) = \left\vert{G(t)}\right\vert\) and \(h_2(\mathbf{x}_I, t) = \frac{G(t)\sin(4\pi x_1)}{1 + \left\vert{G(t)}\right\vert}\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment, the search space is \([0,1] \times [0,1]^{\lfloor\frac{D}{2}\rfloor -1} \times [-1, 1]^{\lceil\frac{D}{2}\rceil}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
Pareto front.
Source code in pydmoo/problems/dynamic/gts.py
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.
Source code in pydmoo/problems/dynamic/gts.py
GTS4_2 ¶
GTS4_3 ¶
GTS5 ¶
Bases: GTS
GTS5 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1, x_2)\), \(\mathbf{x}_{II,1} = (x_3, \cdots, x_{\lfloor\frac{D}{2}\rfloor + 1})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 2}, \cdots, x_D)\), \(h_1(\mathbf{x}_I, t) = \cos(0.5\pi t)\) and \(h_2(\mathbf{x}_I, t) = G(t) + x_1^{H(t)}\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment, the search space is \([0,1]^2 \times [-1,1]^{\lfloor\frac{D}{2}\rfloor - 1} \times [-1, 2]^{\lceil\frac{D}{2}\rceil-1}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
Pareto front.
Source code in pydmoo/problems/dynamic/gts.py
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.
Source code in pydmoo/problems/dynamic/gts.py
GTS5_2 ¶
GTS5_3 ¶
GTS6 ¶
Bases: GTS
GTS6 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1)\), \(\mathbf{x}_{II,1} = (x_2, \cdots, x_{\lfloor\frac{D}{2}\rfloor})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 1}, \cdots, x_D)\), \(h_1(\mathbf{x}_I, t) = \cos(0.5\pi t)\) and \(h_2(\mathbf{x}_I, t) = G(t) + x_1^{H(t)}\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment, the search space is \([0,1] \times [-1,1]^{\lfloor\frac{D}{2}\rfloor -1} \times [-1, 2]^{\lceil\frac{D}{2}\rceil}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.
Source code in pydmoo/problems/dynamic/gts.py
GTS6_2 ¶
GTS6_3 ¶
GTS7 ¶
Bases: GTS
GTS7 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1)\), \(\mathbf{x}_{II,1} = (x_2, \cdots, x_{\lfloor\frac{D}{2}\rfloor})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 1}, \cdots, x_D)\), \(h_1(\mathbf{x}_I, t) = \cos(0.5\pi t)\) and \(h_2(\mathbf{x}_I, t) = \frac{1}{1 + e^{\alpha_t(x_1 - 0.5)}}\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment, the search space is \([-1,2.5] \times [-1,1]^{\lfloor\frac{D}{2}\rfloor - 1} \times [0, 1]^{\lceil\frac{D}{2}\rceil}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
Pareto front.
Source code in pydmoo/problems/dynamic/gts.py
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.
Source code in pydmoo/problems/dynamic/gts.py
GTS7_2 ¶
GTS7_3 ¶
GTS8 ¶
Bases: GTS
GTS8 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1, x_2)\), \(\mathbf{x}_{II,1} = (x_3, \cdots, x_{\lfloor\frac{D}{2}\rfloor + 1})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 2}, \cdots, x_D)\), \(h_1(\mathbf{x}_I, t) = \frac{1}{1 + e^{\alpha _t(x_1 - 0.5)}}\) and \(h_2(\mathbf{x}_I, t) = G(t) + x_1^{H(t)}\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment, the search space is \([0,1]^2 \times [0,1]^{\lfloor\frac{D}{2}\rfloor -1} \times [-1, 2]^{\lceil\frac{D}{2}\rceil-1}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
Pareto front.
Source code in pydmoo/problems/dynamic/gts.py
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.
Source code in pydmoo/problems/dynamic/gts.py
GTS8_2 ¶
GTS8_3 ¶
GTS9 ¶
Bases: GTS
GTS9 test problem.
- Inherits all parameters from parent class GTS.
Attributes:
| Name | Type | Description |
|---|---|---|
name | str | Problem name, default is 'GTS1' |
n_var | int | Number of decision variables |
n_obj | int | Number of objective functions |
time_linkage | bool | Whether the problem has time linkage |
Notes
- Mathematical Formulation:
with
where \(p \geq 1\), \(\mathbf{x}_I = (x_1, x_2)\), \(\mathbf{x}_{II,1} = (x_3, \cdots, x_{\lfloor\frac{D}{2}\rfloor + 1})\) and \(\mathbf{x}_{II,2} = (x_{\lfloor\frac{D}{2}\rfloor + 2}, \cdots, x_D)\), \(h_1(\mathbf{x}_I, t) = \frac{1}{1+e^{\alpha_t(x_1 - 0.5)}}\) and \(h_2(\mathbf{x}_I, t) = \sin(tx_1)\), \(\mathbf{R}_{II,1}(t)\) and \(\mathbf{R}_{II,2}(t)\) are symmetric positive semidefinite matrices in the \(t\)-th environment, the search space is \([0,1]^2 \times [0,1]^{\lfloor\frac{D}{2}\rfloor - 1} \times [-1, 1]^{\lceil\frac{D}{2}\rceil - 1}\).
- Pareto set (PS)

- Pareto front (PF)

Source code in pydmoo/problems/dynamic/gts.py
Functions¶
_calc_pareto_front ¶
Pareto front.
Source code in pydmoo/problems/dynamic/gts.py
_calc_pareto_set ¶
Pareto set.
Source code in pydmoo/problems/dynamic/gts.py
_evaluate ¶
Evaluate.